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Charge-memory polaron effect in molecular junctions
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The charge-memory effect, bistability, and switching between charged and neutral states of a molecular
junction, as observed in recent scanning-tunneling microscope (STM) experiments, is considered within a
minimal polaron model. We show that in the case of strong electron-vibron interaction, the rate of spontaneous
quantum switching between charged and neutral states is exponentially suppressed at zero bias voltage but can
be tuned through a wide range of finite switching time scales upon changing the bias. We further find that,
while junctions with symmetric voltage drop give rise to random switching at finite bias, asymmetric junctions
exhibit hysteretic behavior, enabling controlled switching. Lifetimes and charge-voltage curves are calculated
by the master-equation method for weak coupling to the leads and at stronger coupling by the equation-of-
motion method for nonequilibrium Green’s functions.
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I. INTRODUCTION

Memory effects and switching at the molecular scale are
the focus of present experimental and theoretical studies
within molecular electronics.'”” Besides stochastic switching
in single-molecule junctions,* recent scanning-tunneling mi-
croscope (STM) experiments®® show multistability of neutral
and charged states of single metallic atoms coupled to a me-
tallic substrate through a thin insulating ionic film. The
switching was performed by the application of a finite volt-
age to the STM tip and was explained by the large ionic
polarizability of the film.?

The coupling of a charge to the displacement of ions in
the film can be treated as an electron-vibron interaction. If
the energy of the unoccupied electron level without electron-
vibron interaction is €, the occupied (charged) state of the
interacting system will have the energy €,=¢€)—¢€,, where ¢,
is so-called polaron shift (or recombination energy). Neutral
and charged (polaron) states correspond to the local minima
of the potential energy surface and are metastable if the
electron-vibron interaction is strong enough. Applying an ex-
ternal voltage, one can change the state of this bistable sys-
tem, an effect that is accompanied by hysteretic charge-
voltage and current-voltage curves.

It was suggested®® that bistability between charged and
neutral states can be accounted for in a single-level model,
where one electron level is coupled to one vibration (Fig. 1).
It was also shown that quantum switching between these
metastable states can limit their lifetime and even result in
telegraph noise at finite voltage rather than in a controlled
switching.!%!! In this paper we investigate the crossover be-
tween these two pictures, depending on the relation between
the time scales of quantum switching and voltage sweep.
More precisely, the switching time 7 between the two states
of interest should be compared with the characteristic time
of the external voltage sweeping, 7,~ V(¢)/[dV(t)/dt]. For
7> 7,, quantum switching can be neglected and hysteresis
can be observed, while in the opposite limit, 7<< 7, the av-
eraging removes the hysteresis. We calculate the charge-
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voltage curves and describe the full crossover between two
regimes. In the single-level approximation it is not necessary
to include Coulomb interaction explicitly, though one can
additionally incorporate charging effects in the multilevel
case.

The problem can be solved clearly and transparently in
the limit of weak coupling to the leads, when the master
equation for sequential tunneling can be used. Thus we focus
our major discussion on this limit. In addition, the other limit
of intermediate coupling to the leads is considered briefly
and confirms our conclusions about the role of the electro-
static asymmetry.

The paper is organized as follows: In Sec. II we introduce
the model. In Sec. III we outline the master-equation method
and present the results in the case of weak coupling to the
leads. In Sec. IV the case of intermediate coupling to the
leads is considered briefly and compared with the weak-
coupling case, before we conclude in Sec. V.

II. MODEL

The Hamiltonian of the single-level polaron model is
H=(e+epy)d'd+ wya’a+Na +a)d'd

+ 2 [(ex+ e@)cheq + (Vychd + Hee)], (1)
i

where the first three terms describe the free-electron state,
the free vibron of frequency w, (i=1), and the electron-
vibron interaction. The other terms are the Hamiltonian of
the leads and the tunneling coupling (i=L,R is the lead in-
dex; k labels electron states). The bias voltage is introduced
through the left and right electrical potentials V=¢; — @g. The
energy level g, in Eq. (1) can be shifted through the gate
voltage V. We choose as reference energy €,=0 for V;=0
and assume a linear capacitive coupling, €;=aeV, setting
a=1.

The electrical potential ¢, plays an important role in
transport at finite bias voltages. It describes the shift in the
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FIG. 1. (Color online) (a) The energy diagram of the single-level
electron-vibron model, coupled to the left and right leads (or tip and
substrate in the case of STM). (b) Franck-Condon matrix elements
M,,, for weak (g=0.1, squares), intermediate (g=1, triangles), and
strong (g=10, circles) interactions.

molecular level by the bias voltage, which is divided be-
tween the left lead (tip), the right lead (substrate), and the
molecule as @y= g+ (@, —@g),'> where 0< <1 describes
the symmetry of the voltage drop across the junction: =0
corresponds to the completely asymmetric case, while
7n=0.5 stands for the symmetric case. We assume the
simplest linear dependence of the molecular potential
(m=const), but its nonlinear dependence'® can be easily in-
cluded in our model.

The coupling to the leads is characterized by the level-
width function

Ti(e) =272 |V, oe— €. (2)
X

In the wide-band limit considered below, the density of states
in the leads p(e) is constant and the coupling matrix elements
Vi are assumed to be energy independent, so that I'; and I'k
are constants. The full level broadening is given by the sum
F = F L+ F R

Using the polaron (Lang-Firsov)!41% canonical transfor-
mation, it is easy to show that the eigenstates of the isolated
system (I'=0) are

Tym

Neontat—ardt (a")
=y e,

\m!

with the eigenenergies

A2 A2
€=€— ", =", (4)
o o

E,, = ¢€n+ wym,

where n denotes the number of electrons, while the quantum
number m characterizes vibronic eigenstates, which are su-
perpositions of states with different numbers of bare vibrons.
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III. WEAK COUPLING TO THE LEADS
When the system is weakly coupled to the leads,
I'< ), Ep, (5 )

the polaron representation, Egs. (3) and (4), is a convenient
starting point. The qualitative picture of the sequential tun-
neling through a polaronic state is given in Fig. 1(a). Here
the potential energies of the neutral and charged states are
sketched as a function of the vibronic coordinate x. When an
external voltage is applied, the energy levels are shifted de-
pending on the asymmetry parameter 7. It should be noted
that this type of energy diagram is quite general for charge-
controlled bistable systems.

In the sequential-tunneling regime, the master equation
for the probability p,,,(7) of finding the system in one of the
polaron eigenstates [Eq. (3)] can be written as'7-20

dp,m

i I'[pl. (6)

nn' n'n
= 2 me’pn'm'_ E F ’mpnm+

n'm'

Here the first term describes the tunneling transition intfo the
state
of the state . I'[p] is the vibron-scattering integral de-
scribing the relaxation of vibrons to equilibrium. The transi-

tion rates F;’;;, are found from the tunneling Hamiltonian
[the last term in Eq. (1)]. Taking into account all possible
single-electron-tunneling processes, we obtain the incoming
and outgoing tunneling rates at zero bias voltage as

I“rlnom’ = E Iﬂi(Elm_EOm’)Uu ! zf?(Elm_EOm’)v (7)

i=L,R

F(r)nlm’ = E 1—‘i(Elm’ _EOm)|Mmm’|2[1 _f?(Elm' - EOm)]
i=L.R
(®)
Here f°(e) is the equilibrium Fermi function and
a” N ahm
My ={ 0 ,—exp{—(a —a)} @) ©)
\m! o ym'!

is the Franck-Condon matrix element, which is symmetric in
m—m' and can be calculated analytically. For m <<m' it reads

2 ( g)l\r’m Im' e~ g/2g(m -m)/2

o 'm=D!'(1I+m'—m)!

: (10)

m<m

where g=(\/w)? is the Huang-Rhys factor.?!

One characteristic feature of these matrix elements in
transport is the Franck-Condon blockade:'*?*2? In the case
of strong electron-vibron interaction, the tunneling with
small changes in m is suppressed exponentially, as illustrated

mi2
in Fig. 1(b) for the matrix element M, =e %=, Hence
.

only tunneling through high-energy states is possible, which
is also suppressed at low bias voltage and low temperature.
Finally, the average charge is

<n>(t):2plms (11)
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FIG. 2. Inverse lifetime (7I)~! of the neutral state (thin solid
line) and the charged state (thick gray solid line) as a function of
N @y at €g=\%/2w, and the same at €,=0.9\?/ w, (dashed lines);
kT=0.lw0.

and the average current (from the left or the right lead) reads

Jig@®=e 2 (T powr =T D) (12)

mm

To proceed further, we calculate the characteristic life-
times of the neutral and charged ground states. The lifetime
7,m Of the generic state |n,m) is given by the sum of the rates
of all possible processes which change this state,

IO a (13)

As an example, calculating the lifetime of the neutral state
0,0), with an energy higher than the charged ground state
1,0), we find

o= 2 TUE = Eq) | Mo ) (E - Ep).  (14)

m i=L,R

For energy-independent I'; (the wide-band limit), we obtain
the simple analytical expression

m )\2
T&;:FE e‘g%fo(eo——o+wom>. (15)

[0

The corresponding expression for the lifetime of the charged
state is (assuming that the equilibrium electrochemical
potential in the leads is zero)

gm )\2
=T, e'ggfo<— 60+w—+w0m>. (16)
m . 0

The dependence of tunneling rates (15) and (16) on the
scaled electron-vibron interaction constant N/ w, is shown in
Fig. 2. Tt is clearly seen that at large values of A the tunneling
from the neutral state to the charged state and vice versa is
exponentially suppressed in comparison with the bare tunnel-
ing rate I'. Hence both states are (meta)stable at low
temperatures and zero voltage.

Based on the experimental parameters of Ref. 2, the
charged ground state is assumed to be below the equilibrium
Fermi energy of the leads, while the neutral ground state is
above it. In the experiments” the observed relaxation energy
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FIG. 3. Inverse lifetime (7I")~! as a function of normalized volt-
age eV/w, for the asymmetric junction (7=0) at N/ wy=>5 and ¢,
=\?/2wy for the neutral state (thin solid line) and the charged state
(thick gray solid line) and the same for the symmetric junction
(7=0.5, dashed lines). Inset: random switching between bistable
states (dashed line) and single switching into the stable state (full
line) after a sudden change in the voltage.

€,~2.4 eV leads to the parameter N/ w, of order 5-10. Thus
the system is in the blockade regime at zero voltage;
see Fig. 2.

Next we consider the other important question, whether a
fast switching between the two states is possible. At finite
voltage the switching rates are

_ e sg"
INED T{Flfo[el + wom = (1= n)eV]

m

+Trf(e) + wgm + 5eV)}, (17)

_ e sg"
To= 2 T{szo[— €+ wym + (1 - n)eV]

m

+ Tpf(- € + wym — eV)}. (18)

The voltage dependence of the inverse lifetime (71)~! is
shown in Fig. 3 for a junction with the same tunneling cou-
pling I'; =I" but asymmetric voltage drop (7=0), as well as
for the completely symmetric junction (7=0.5). The results
in Fig. 3 imply that in both cases one can tune (7I")~! upon
sweeping the bias voltage and thereby control the time scales
for switching between charged and neutral states. For the
symmetric junction both switching rates, Taé and TTé (dashed
lines), are simultaneously nonzero at finite voltage (eV/w,
=40 for the parameters in Fig. 3), leading to random switch-
ing (noise), sketched as a dashed line in the inset. On the
contrary, for the asymmetric junction, controlled switching
into the neutral (black solid line) and charged (gray line)
states can be achieved at large enough negative and positive
voltages, respectively. This qualitatively different behavior is
a result of the distinct voltage asymmetry of the two inverse
lifetimes which are never both finite. The further peculiar
feature of the asymmetric case, namely, that the switching
rates of the neutral and charged states interchange their role
as a function of the bias, i.e., the neutral (charged) state is
long lived at negative (positive) bias, implies hysteretic be-
havior and a memory effect.
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FIG. 4. Population of the neutral state as a function of normal-
ized voltage eV/w, in the asymmetrical junction (7=0) at A/ wq
=5 and €=\?/2w, for fast voltage sweep (thin solid line), for
slower sweep (thick gray solid line), and in the adiabatic limit
(dashed line). Inset: sketch of voltage time dependence.

To this end we consider what happens if one sweeps the
voltage with different velocities. At this point an assumption
about the relaxation of vibrons without change in the charge
state should be made. For simplicity we assume that the re-
laxation of vibrons is fast, 7,<< 7, 7, so that after an electron-
tunneling event the system relaxes immediately into the vi-
bronic ground state |[1,0) or |0,0). In this case the
probabilities p; of the charged state and p, of the neutral
state are determined by the equations

dpy 4 -1
- = - , 19
dt Ti0P1 ~ TooPo (19)
dp, -1 -1
— =1 -7 s 20
dt 0020~ T10P1 (20)

with the lifetimes 7y, and 7,y from Egs. (17) and (18).

Now let us consider the results for the asymmetric case
7=0 (Fig. 4). If the voltage is changed fast enough, i.e.,
faster than the lifetime of charged and neutral states (7> 7,
as discussed in Sec. 1), then both states are stable at zero
voltage (hysteresis). In the opposite (adiabatic) limit the volt-
age change is so slow that the system relaxes into the equi-
librium state, and the population-voltage curve is single val-
ued. Note that this controlled switching is possible only for
asymmetric junctions for the reason given above.

IV. INTERMEDIATE COUPLING TO THE LEADS

We finally compare the results with those of a further
important limiting case, namely, the finite level width. Then
the master-equation approach can no longer be used, and we
apply alternatively the nonequilibrium Green’s-function
technique,?*Y which have been recently developed to treat
vibronic effects in a self-consistent way.!~*?> The average
number of electrons is determined by the lesser Green’s
function G=(t,—t,)=i{d"(t,)d(t,)) as
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eV/w,

FIG. 5. Average number of electrons at I'; =['s=5w as a func-
tion of normalized voltage eV/w, for the asymmetric junction, 7
=0 (thin solid line), and for the symmetric junction, 7=0.5 (dashed
line), for A/ wy=5 and €y=\2/ w,.

(n):—ij G<(e)j—:r. (21)

Actually, the lesser function G=(¢€) is used in the quantum
kinetic formalism as a distribution function. In the single-
level case the distribution function can be introduced through
the relation

G=(e) =iA(e)f(e), (22)

where A(€)=-2 Im GR(e) is the spectral density.

The calculation of Green’s function is a nontrivial task
even in the single-level model. It is simplified in the impor-
tant limit of low vibron frequencies,

(O <I'< ép’ (23)

where the Born-Oppenheimer approximation holds true. We
used the equation-of-motion approach in this case. In Fig. 5
the charge-voltage dependence, obtained in the simplest
mean-field approximation,®® is shown. The spectral and the
distribution functions in this case are given by the simple
self-consistent expressions

r
Ale) = 2)\22 —, (24)
(e— e+ —(n)— e<p0> +17?
o
o= ilemee) + Tufilemeed

r,+Ty

The result is qualitatively the same as in the sequential-
tunneling case: For electrically asymmetric junctions two
stable states exist at zero bias (memory effect), which can be
switched by the voltage. The current shows a similar hyster-
etic behavior as a function of voltage. For the symmetric
junction, hysteresis is observed only at finite voltage (non-
equilibrium bistability). Hence, asymmetric junctions are
again preferable for a memory effect. We consider this lim-
iting case in more detail in Ref. 43.

Finally we note that in the case wy<<I" we considered the
stationary problem only, assuming that the switching rate
between the two metastable states is small (compared, e.g.,
to I') at large N/ wy. The calculation of the lifetimes of meta-
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stable states within the Green’s-function approach and of dy-
namical effects arising from the competition between voltage
sweeping and switching times, such as in Fig. 4, remains as
a problem for the future.

V. CONCLUSIONS

To conclude, we considered a charge-memory effect and
switching phenomena in single-molecule junctions in the
framework of a simple polaron model, taking into account
nonstationary effects, in particular the interplay between time
scales of voltage sweeping and quantum switching rates
from metastable states. We showed that the bistability arises
if the quantum switching between neutral and charged states
involved are suppressed, e.g., due to Franck-Condon block-
ade. In the quasiclassical language this means that there are
two local minima of the energy and the barrier height be-
tween these two states is large enough.

In view of possible experimental realizations and applica-
tions of the memory effect, the lifetime of the memory states
should be large compared with the other important time scale
of the problem, namely, the voltage sweeping time. In this
paper, employing the time-dependent master-equation
method, different regimes, characterized by random mutual
transitions and by single switching events into a stable con-
figuration, are identified. In the latter case, controlled switch-
ing of the molecule is achieved by applying finite voltage
pulses.

Special attention is paid to the role of the junction asym-
metry and its influence on the memory effect. Electrostati-
cally symmetric and asymmetric junctions show qualitatively
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different bistability behaviors. We found that in the case of
asymmetric bias-voltage drop across the junction, 7=0, both
neutral and charged states can be unstable at one polarity of
bias voltage and stable at the opposite polarity. Under an
appropriate choice of parameters, the instability regions for
the two memory states do not overlap. Thus a definite
memory state can be obtained. Moreover both states are
(meta)stable at zero bias voltage. Finally, the finite thresholds
in bias voltage prevent accidental switching by noise or a
weak external signal. These properties enable in principle a
memory functionality of the system including writing of two
states and readout by a small bias voltage. Note that such an
asymmetric case is typically achieved in STM experiments.

In the case of symmetric voltage drop, 7=0.5, the situa-
tion is different. At finite bias voltage the energy level is
inside the transport window, between the left and the right
electrochemical potentials. Consequently, the system is per-
manently switching between two states, and it is not possible
to fix one definite memory state. The symmetric situation can
also give rise to a hysteretic behavior but only at finite bias
voltages, making this case less interesting for the memory
effect addressed here.
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